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Abstract

Parameterization of triangulated surface meshes is a crucial problem in com-
puter graphics, computer aided geometric design and digital geometric pro-
cessing. This paper addresses the problem of planar parameterization, i.e.,
mapping a given triangulated surface onto a planar domain. We construct
an optimized algorithm for parameterization of genus-zero meshes and aim
to minimize the distortion of the parameterization. An energy functional is
proposed in the paper, that quantities angle and area distortions simulta-
neously, while the relative importance between angle and area preservation
can be controlled by the user through a parameter. The method is based
on an iterative procedure that incrementally flattens mesh by growing re-
gion to obtain a parameterization result with free boundary. The result is
then converted to a parameterization with regular boundary by conformal
mapping. Application of the method to texture mapping is presented. Ex-
periments show that the proposed method can obtain better results than
some common parameterization methods.

Keywords: Triangular Mesh, Parameterization, Conformal Mapping

1. Introduction

With the development of computer technology and 3D acquisition tech-
nique, 3D geometric data has become the fourth most important multimedia
data type after the voice, image, and video. 3D triangular mesh is a simple,
flexible technique and widely supported by graphics hardware. Therefore, a
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large number of applications of 3D triangular meshes can be found in com-
puter graphics and computer-aided design.

A triangular mesh in 3D space can be represented by S = S(G,X), where
X = {xi = (xi, yi, zi), i = 1, . . . , N} is the points set, G = G(V,E, F ) is a
planar simply connected graph, V = {i : i = 1, . . . , N} is the point subscript
set, E is the edge subscript set, and F is the face subscript set.

In general, working on general meshes is a difficult task because of their
complicated geometry. The complicated geometry influences applications
such as texture mapping, morphing and surface fitting. To overcome these
problems, a common practice is to parameterize the 3D surface meshes onto
a simple parameter domain so as to simplify the computations. For instance,
textures can be designed on the simple domain and then mapped back onto
the original surfaces1,2,3,4. It is also common to perform mesh morphing
with the aid of algorithm to parameterize surface meshes over simple base
domains5,6. Another example that usually makes use of parameterization is
surface reconstruction7,8,9. With the development of the computer industry,
the problem of finding a good parameterization method is becoming increas-
ingly important.

3D triangular mesh parameterization refers to an isomorphic mapping
from the triangular mesh in 3D space to a suitable parameter domain, which
can be a flat area, sphere and so on. Triangular mesh parameterization has
important applications in computer graphics and computer aided geometric
design, such as for texture mapping, surface fitting, and surface reconstruc-
tion. Additionally, in the field of digital geometry processing, tasks such as
3D mesh editing, computer animation, multi-resolution analysis, and geom-
etry compression require a prior parameterization of a 3D mesh to an easy
area for interactive processing parameters.

Mathematically, parameterization mapping can be defined as

φ : S → P
where S is the triangular mesh in 3D space, and P = P(G1,U) is a planar
triangular mesh which is isomorphic to S(Figure 1).

Ideally, the parameterization mapping between the 3D mesh and the pla-
nar mesh should be isometric, which means angles and distances are pre-
served. However, except for developable surfaces, general open surfaces can-
not achieve this ideal condition. It has been shown by Gauss in 1828 that it is
not possible to find an isometric mapping between two surfaces with different
intrinsic curvature. To make a parameterization useful and applicable, one
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Figure 1: A graph, a triangular mesh, and parameterization

should seek for a method that minimizes certain types of distortions. In par-
ticular, it is desirable to minimize the angular distortions of the 3D meshes.
Angle preserving parameterizations, also known as conformal parameteriza-
tions, effectively preserve the local geometry of the surfaces10. Therefore, in
this paper, we attempt to develop an efficient conformal parameterization
method by minimizing the distortion energy. In general, the choice of the
parameter domain is a key factor in deciding the parameterization scheme.
For simply-connected open surfaces, one popular choice of the parameter
domain is the unit disk or square region. We present a parameterization
algorithm which traverses the mesh using a region growing scheme. The al-
gorithm takes into consideration of the distortion by two factors: area and
angle, thus yielding results with less global distortion.

The rest of the paper is organized as follows. In Section 2, we review the
previous surface parameterization techniques that are related to our work.
In Section 3, we provide a brief sketch of mathematical theory related to this
paper. Our proposed method is explained in details in Section 4. In Section
5, we present numerical experiments to demonstrate the effectiveness of our
proposed method. The paper is concluded in Section 6.

2. Related Work

With a large variety of real applications, surface parameterization has
been extensively studied by different researchers. Readers are referred to11,12

for surveys of mesh parameterization methods. In this section, we will only
give an overview of the works on conformal parameterization that are related
to our work.

The parameterization of a triangular 3D mesh, which provides a bijective
mapping between the mesh and a triangulation of a planar polygon, plays
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an important role in texture mapping. Floater13 investigates a graph theory
based parameterization for tessellated surfaces for the purpose of smooth
surface fitting; his parameterization (actually a planar triangulation) is the
solution of linear systems based on a convex combination. In14, Hormann
and Greiner use Floater’s algorithm as a starting point for a highly non-linear
local optimization algorithm which computes the positions for both interior
and boundary nodes based on local shape preservation criteria. They called
their approach: Most Isometric Parameterizations(MIPS). The method is
promising, but it is not clear if the procedure is guaranteed to converge to a
valid solution.

Wolfson et al.15 introduce a flattening method based on the geodesic dis-
tance. They first use a computationally intensive method for finding the
geodesic distance between pairs of points on the surface. Then, they use a
specific MDS16 (Multi-Dimensional Scaling) approach to flatten the surface
using these geodesic distances, and by minimizing the function presented by
Sammon in17. The work by Zigelman et al.18 analytically finds an embed-
ding of an open mesh in the plane by a MDS (Multi-Dimensional Scaling)
method that optimally preserves the geodesic distances between mesh ver-
tices. However, finding minimal geodesic distances between points on a con-
tinuous surface is a classical and difficult problem in differential geometry.
All the methods above involve high computational complexity.

The angle based flattening (ABF) method presented by Sheffer et al.19 is
based on the observation that the set of angles of a 2D triangulation uniquely
defines the triangulation up to global scaling and rigid transformations. They
define an angle preservation metric directly in terms of angles. The method
first computes the parameterization in angle space and subsequently converts
it into 2D coordinates. In addition to avoiding flips, its important advantage
is that it also closely preserves the angles and produces parameterizations
with low area (and stretch) deformation. However, the optimization pro-
cedure used by ABF is numerically expensive. Recently, researchers have
discussed methods to speed up ABF but an implementation is still lacking.

Some parameterization methods are based on strain-energy minimiza-
tion20. They assume that the original 3D surface has zero energy, i.e. they
are without wrinkles or stretches, while the 2D pattern is sought that mini-
mizes the deformation energy. Their non-linear optimization scheme handles
around a thousand vertices within a few seconds . Due to the limitation of
the irregular mesh utilized in the above algorithms, the anisotropic material
is hardly simulated. In21 Wang et al. demonstrate the utilization of a woven-
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like regular quadrilateral mesh model which greatly facilitates the simulation
of anisotropic material based surface flattening.

Conformal maps preserve both the magnitude and sense of angles between
arbitrary arcs. Thus, angle preservation is typically addressed from the con-
formal point of view. B. Lévy et al.22 give a quasi-conformal parameteriza-
tion method, based on a least squares approximation of the Cauchy-Riemann
equations. The objective function minimizes angle deformation. In addition,
N. Ray and B. Lévy23 introduce HLSCM (Hierarchical Least squares Confor-
mal Map), an efficient parameterization method for large meshes. The work
by Gu24 and Steven Haker et al.25 have created flattened representations
or visualizations of the cerebral cortex or cerebellum. These works indicate
that if a quasi-length and area-preserving mapping is desired, the conformal
mapping technique is a very reasonable starting point, since it preserves local
geometry.

Aigerman et al.26 introduces an algorithm for computing low-distortion,
bijective mappings between surface meshes. Smith et al.27 present a method
for generating surface parameterizations from triangulated 3D surfaces par-
titioned into charts by using a distortion metric that prevents local folds of
triangles in the parameterization. Others28,29 bound the distortion of trian-
gles to guarantee locally injective parameterizations. In addition, all of these
methods can guarantee a bijective map if the user constrains the boundary
of the charts to form a non-intersecting curve.

3. Brief Sketch of Mathematical Theory

In this section we review the required mathematical background essential
for the parameterization method presented in this paper.

3.1. Conformal Mapping

Conformal mapping uses complex function to transform 2D domains (Fig-
ure 2).

A mapping is conformal if it preserves the angle between two differentiable
arcs. To show that the mapping affected by a regular analytic function is
indeed conformal, we proceed as follows. Suppose f(z) is regular in the
neighborhood of a point z = z0 at which f ′(z0) 6= 0. The point z = z0

is the terminal of two differentiable arcs α and β, the angle between their
tangent vectors α′(z) and β′(z) at point z0 is the same as the angle between
the tangent vectors (f ◦ α)′(z0) and (f ◦ β)′(z0), i.e. the image of α and β
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Figure 2: Sketch map of Conformal mapping

under f . This means that f is conformal at point z0. If f is conformal for
all points in D it is called a conformal mapping, which is equivalent to the
Cauchy-Riemann equation such that:

∂f

∂z
= 0 (1)

Consider now z = x+ iy and w = u+ iv, we deduce a 2D function f(x, y)
from the function w = f(z), parameterized by (x, y) that returns a 2D point
(u,v). The Cauchy-Riemann equation is that:

∂f

∂x
+ i

∂f

∂y
= 0 (2)

The existence of a conformal mapping between any two simply connected
regions is guaranteed by the Riemann mapping theorem. Conformal mapping
has long been used to solve boundary value problems in fluid flow, electro-
statics, heat transfer, and elasticity. Recently, it has also been widely used
in the fields of computer graphics and computer vision24.

3.2. Differential Geometry

As mentioned above, parameterization is a isomorphic mapping between
the 3D surface mesh and the target domain. The properties of the parame-
terization is closely related to the properties of the isomorphic mapping.

Consider the parametric surface S : X(u, v) = (x(u, v), y(u, v), z(u, v)).
If S is differentiable, then its partial derivatives are:

X1 = ∂X
∂u
, X2 = ∂X

∂v

The first fundamental form of S is

I = X1 ·X1du
2 + 2X1 ·X2dudv +X2 ·X2dv

2. (3)
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Many properties of a parametric surface can be characterized by its first
fundamental form.
Suppose:

gij = Xi · xj, i = 1, 2, j = 1, 2,

then we can define the matrix:

G =

(
g11&g12

g21&g22

)
(4)

Then, the first fundamental form of S can also be defined as the following:

I = (du dv)G

(
du
dv

)
(5)

The determinant of G is:

g = g11 ∗ g22 − g12 ∗ g21. (6)

The formula (6) is referred to as the discriminant of the first fundamental
form of the parametric surface.

For two parametric surfaces, we can always make their corresponding
points have the same parameters through parameter transformation. Given
two parametric surfaces S and S1, assume that their corresponding points
have the same parameters.

Proposition. The necessary and sufficient condition for the mapping between
two parametric surfaces S and S1 being conformal, is that their first funda-
mental forms are proportional, that is I1 = λ(u, v)I, where λ(u, v) 6= 0.

That is if a mapping between two surfaces S and S1 keeps local angles
unchanged, then the mapping is conformal (angle-preserving).

Proposition. The necessary and sufficient condition for the mapping between
two parametric surfaces S and S1 being equiareal is that the determinants
of their first fundamental forms are the same, that is g = g1.

That is if a mapping between two surfaces S and S1 keeps the areas
unchanged, then the mapping is equiareal (area-preserving).
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Proposition. The necessary and sufficient condition for the mapping between
two parametric surfaces S and S1 being isometric is that their first funda-
mental forms are the same, that is I = I1.

That is if a mapping between two surfaces keeps curve lengths unchanged,
then the mapping is isometric.

Obviously, any isometric mapping is conformal and equiareal, and ev-
ery mapping that is conformal and equiareal is also isometric. This can be
expressed as:

isometric⇐⇒ conformal + equiareal.

4. Proposed Method

In this section, we present our proposed method for disk conformal pa-
rameterizations of simply-connected open surfaces in details.

4.1. Validity of parameterization

Parameterization of triangular mesh must meet the requirements of va-
lidity. The necessary and sufficient condition for the validity is that the
vertices, edges and faces of the original triangular mesh and the parametric
triangular mesh must have one-to-one correspondence. The corresponding
edges must connect the corresponding vertices and the corresponding faces
must be connected at the corresponding vertices and edges. Additionally, the
boundary vertices of the original triangle mesh and the parametric triangular
mesh should have counterclockwise correspondence. As shown in Figure 3,
u is a valid parameter of X, and u∗ is invalid.

Figure 3: Validity of Parameterization
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4.2. Parameterization Distortion

Although the parameterization of a surface mesh is not unique, the pro-
cess of obtaining the best parameterization with respect to a certain criteria
is a challenging problem. In fact, along with meeting the criteria of validity,
parameterization must also meet the requirements of distortion minimiza-
tion. Apart from these intrinsic surface properties, there are other properties
which depend on the parameterization - most importantly, the distortion of
the intrinsic geometric metrics (such as length, angle or area). Mathemati-
cally, if the parameterization between the 3D triangular mesh and the plane
is isometric, the requirements are naturally satisfied. However, we can just
get an isometric mapping between the developable surface whose Gauss cur-
vature is 0 and the plane. For a general surface mesh, the distortion of the
parameterization is inevitable.

4.3. Distortion Energy

For our application, since the parameterization mapping is isomorphic, we
are looking for an inverse mapping form. Suppose T = ∆p1p2p3 is a spatial
triangle, and T ′ = ∆q1q2q3 is a planar triangle, where qi = (ui, vi), i = 1, 2, 3.
For the mapping f : T ′ → T , if f satisfies the Cauchy-Riemann equation(2),
it is angle-preserved.

We define the angle-preserved energy as

E1(T ) = |∂f
∂u

+ i
∂f

∂v
|2. (7)

where | · | is gradient.
Consider the first basic form matrix of f :

I =

(
∂f
∂u
· ∂f
∂u

∂f
∂u
· ∂f
∂v

∂f
∂u
· ∂f
∂v

∂f
∂v
· ∂f
∂v

)
.

The mapping is area-preserved if detI ≡ 1. So we define the angle-preserved
energy as:

E2(T ) = |detI − 1|2. (8)

Based on equation (7) and (8), we define the distortion energy as:

E(T ) == ε · |∂f
∂u

+ i
∂f

∂v
|2 + (1− ε) · |detI − 1|2. (9)
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where ε ∈ [0, 1]. Equation (9) is a linear combination of equation (7) and
(8), so it can measure the angular distortion and area distortion associated
with the parameterization mapping.

The problem can be reduced to R2 → R2 by considering how to map the
triangles of a 3D mesh to their corresponding triangles in the u-v plane in
parameter space. In the following section, we will create a discretized form of
equation (9) by converting each 3D triangle to its local 2D coordinate frame.

4.4. Discretization

We propose a discretization form of equation (9) in the following. Con-
sider the spatial triangle T = ∆p1p2p3, where pi = (x̄i, ȳi, z̄i), i = 1, 2, 3.

Suppose
−→
A = p2 − p1,

−→
B = p3 − p1, and N = A × B/ ‖ A × B ‖, X =

N × B/ ‖ N × B ‖, Y = X × B/ ‖ X × B ‖, then X and Y is a local basis
of T (figure 4).

Figure 4: Triangle’s Local Coordinate System

On the basis of X and Y , we can get p1 = (0, 0), p2 = (A ·X,A · Y ), p3 =
(B ·X,B · Y ).

Based on this idea, we can use the reconstructed 3D points to form a
mesh M = {pi, i ∈ [1, n], Tj, j ∈ [1,m]}. Here pi are the n 3D points on the
surface mesh which serve as the vertices, and Tj represents the resulting m
triangles, denoted as a tuple of three mesh vertices. In their local coordinate
frame, we can consider pi = (x′i, y

′
i) .

A triangle-to-triangle mapping is defined by a unique affine transforma-
tion between the original and destination triangle. For the planar trian-
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gle T ′ = ∆q1q2q3, where qi = (ui, vi), i = 1, 2, 3. Consider the mapping
f : T ′ → T , if f(qi) = pi, i = 1, 2, 3, then

f(q) = Area(∆qq2q3)p1+Area(∆q1qq3)p2+Area(∆q1q2q)p3
Area(∆q1q2q3)

,

where Area(·) is the area of the triangle. The partial derivatives (triangle
gradient) of this equation are as follows:





∂f

∂u
=

(v2 − v3)p1 + (v3 − v1)p2 + (v1 − v2)p3

2Area(∆q1q2q3)
,

∂f

∂v
=

(u3 − u2)p1 + (u1 − u3)p2 + (u2 − u1)p3

2Area(∆q1q2q3)
.

(10)

The triangle gradient (10) can be used to formulate the Cauchy-Riemann
equations. This can be written compactly in the matrix form as follows:

[∂u
∂x
− ∂v

∂y
∂v
∂x

+ ∂u
∂y

]
=

1

2AT

[
∆x1 ∆x2 ∆x3 −∆y1 −∆y2 −∆y3

∆y1 ∆y2 ∆y3 ∆x1 ∆x2 ∆x3

]




u1

u2

u3

. . .
v1

v2

v3




=

[
0
0

]

(11)

where ∆x1 = (x3− x2),∆x2 = (x1− x3),∆x3 = (x2− x1) and ∆yi is defined
similarly, AT is the area of the triangle defined by Tp1p2p3 . Solving this
equation will find the appropriate parameters (ui, vi). Working from the
equation (11), we can write a global system of equations, AX = b, that
incorporates all the vertices and triangles in the mesh T .

4.5. Solving the System

To obtain a unique solution for the system AX = b up to a similitude,
some vertices must be constrained - otherwise the (ui, vi) could have any
arbitrary orientation in the 2D plane. Fixing at least two values will give
a unique solution and constrains the orientation in the resulting conformal
map. For example, if we want to constrain l vertices, pk, to map to specified
locations qk, we modify the matrix A and vector b to reflect this constraint,
such that A′s l column entries, ak and a2k, are removed from the matrix A.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A new b is constructed to incorporate this constraint in the solution, such
that:

b = −
[
a2k1 a2k2 . . . alk1 alk2

]




uk1
...
ukl
vk1
...
vkl



,

where ai are the columns removed from A, and uki and vki represent the
constrained parameter values.

After computing the new A and b, we can solve the linear system. Since
the solution is exact for minimizing the parameterization distortion, the vec-
tor x is computed to minimize ‖Ax− b‖2. This linear system can be solved
using sparse solvers such as Conjugate Gradient. The resulting x vector
contains the corresponding (u, v) values for the parameterization.

4.6. Algorithm

We consider a bounded connected triangular mesh patch which is home-
omorphic to a disk. Firstly, we arbitrarily select a triangle T0 and put it
on the planar domain with no distortion. Then we flatten all of the other
triangles by minimizing the distortion energy. The algorithm is explained
step by step as follows:

Input: 3D Mesh S, which is bounded and simply-connected.
Output: Planar mesh P , which is approximately isometric to mesh S.
Step 1. Read the data, store the coordinates of the vertices and the

index array.
Step 2. Select a seed triangle T0 from S; embed it onto the plane with

no distortion. And initialize the front-patch array as the three edges of the
seed triangle.

Step 3. Examine all the triangles adjacent to the front-patch, and embed
them onto the plane by minimizing the distortion energy.

Step 4. If the vertex in Mesh P have more than one corresponding ver-
tices in the planar domain, unify them into one.

Step 5. If all the vertices of the Mesh S have been checked, the program
stops. If not, redefine the front-patch array, and go to step 3.
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The key problem in the algorithm is to compute the minimization of the
distortion energy in step 3. The problem can be solved using sparse solvers
such as Conjugate Gradient. Additionally, the boundary of parameterization
by the algorithm is free. If we want to obtain a result with a regular boundary,
we can get it by a 2D → 2D conformal mapping.

For a given region with polygonal boundary, a general method of con-
structing the conformal mapping is offered by Schwarz-Christoffel transfor-
mations.

Theorem Suppose there is a polygon ∆ with complex vertices (possibly
infinite) w1, w2, · · · , wn, given in counter-clockwise order. To each vertex
wk (k = 1, 2, · · · , n) there is a corresponding interior turning angle αkπ
(k = 1, 2, · · · , n), where 0 < αk < 2. Then every function which maps a
unit disk conformally onto the interior of ∆ and satisfies f(0) = a can be
expressed in the form

f(z) = a+ c

∫ z

0

n∏

k=1

(1− z

zk
)αk−1dz, (12)

where c is a suitable complex constant, zk are the pre-vertices of wk with
|zk| = 1, (k = 1, 2, · · · , n). The map f may be made unique by requiring that
f ′(0) = c be positive, or by prescribing the position of one pre-vertex zk.

We denote the map f(z) as a disk-map. A map between two polygons can
be obtained by using a composite map which consists of one forward and one
inverse disk-map. Regard the pre-vertices zk (k = 1, 2, · · · , n) in formula (12)
as the parameters of the Schwarz-Christoffel mapping function. The Schwarz-
Christoffel formula is mathematically appealing, but problematic in practice.
The main practical difficulty with the formula (12) is that except in special
cases, the pre-vertices zk (k = 1, 2, · · · , n) cannot be computed analytically.
This is the Schwarz-Christoffel parameter problem, and its solution is the
key problem in any Schwarz-Christoffel map. Once the parameter problem is
solved, the multiplicative constant c can be found and the Schwarz-Christoffel
formula is the explicit representation of the mapping function f . Though the
Schwarz-Christoffel parameter problem cannot be computed analytically, its
solution can be numerically solved by the Schwarz-Christoffel toolbox30 in
MATLAB, which is well suited for the interactive computation of Schwarz-
Christoffel mappings.

The effective parameterization must ensure that there is no self-intersection,
i.e., all triangles in a planar domain must not fold-over. The original 3D trian-
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gular mesh S is a two-dimensional manifold. In the process of parameterizing
S, if there is no triangle inversion (triangle-flipping), the 2D triangular mesh
P obtained by parameterizing may not overlap - meaning the sequence order
of the three vertices of the 2D triangle is the same as the original 3D triangle.

Proposition. Given a triangle T = ∆p1p2p3 ∈ 3D, the coordinates of the
vertices in the local orthogonal basis are pi = (xi, yi), i = 1, 2, 3. Suppose the
mapping f : T → T ′, where T ′ = ∆q1q2q3 ∈ 2D, and qi = (ui, vi), i = 1, 2, 3.
If f satisfies the Cauchy-Riemann equation

∂f

∂x
+ i

∂f

∂y
= 0, (13)

then T ′ will not be flipped.

Proof:. Equation(13) is equivalent to ∂u
∂x

= ∂v
∂y

∂u
∂y

= − ∂v
∂x

, thus, the determi-
nant of the Jacobi matrix of mapping f satisfies:

|Jf | =
∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣ = ∂u
∂x
· ∂v
∂y
− ∂v

∂x
· ∂u
∂y

= (∂u
∂x

)2 + (∂u
∂y

)2 ≥ 0,

So the sequence order of the vertices of the triangle stays unchanged after
the mapping, that is, T ′ will not be flipped.

5. Experiments

The methods presented in this paper have been implemented and tested
on several mesh models. Figure 5 is the parameterization of the nose mesh,
and figure 6 is the parameterization of the face mesh. We take figure 3 as
an example to illustrate the process of parameterization. In figure 5, figure
5 (a) is the original triangular mesh surface. We use the deformation en-
ergy optimization method based on the regional growth algorithm to flatten
Figure 5 (a) onto the planar domain. Then we get a free boundary param-
eterization result (figure 3 (b)). Next, we extract the polygon boundary of
figure 5 (b) , and use the Schwarz-Christoffel formula to construct a 2D→2D
conformal mapping to map the free boundary parameterization to a unit
square domain (figure 5 (c)) . In fact, other regular boundary (such as the
unit circle etc.) parameters can also be obtained by using a similar process.
Figures 5 (d) to 5 (f) were obtained by the uniform parameterization method,
conformal parameterization method and mean coordinate parameterization
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method respectively. From the figures we can see that the results obtained by
distortion energy optimization method is very similar to the results obtained
by the other methods.

(a) (b) (c)

(d) (e) (f)

Figure 5: Nose Mesh Parameterization. (a) original mesh; (b) free-boundary parameter-
ization based on distortion energy optimization; (c) regular-boundary parameterization
based on distortion energy optimization; (d) uniform parameterization; (e) conformal pa-
rameterization; (f) mean value coordinate parameterization

Texture mapping is one technique that can be used to examine the effect of
the parameterization method. Figures 7 and 8 illustrate the texture mapping
results based on the parameterization method proposed in this paper. We
can see that the textures in figure 7 and figure 8 are uniform and satisfactory.
In figure 9 and figure 10, we apply several other parameterization methods
to the same texture to compare their results with the method proposed in
the paper. Specifically, figure 10(a)-(c) are the Beijing opera mask texture
mapping results based on the uniform parameterization method, the confor-
mal parameterization method, the mean-value coordinate parameterization
method and the distortion energy optimization parameterization method re-
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(a) (b) (c)

(d) (e) (f)

Figure 6: Face Mesh Parameterization. (a) original mesh; (b) free-boundary parameter-
ization based on distortion energy optimization; (c) regular-boundary parameterization
based on distortion energy optimization; (d) uniform parameterization; (e) conformal pa-
rameterization; (f) mean value coordinate parameterization
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spectively. And figure 10(d)-(f) are the local details of figure 10(a)-(c). We
can observe that the result based on the distortion energy optimization pa-
rameterization method is best.

(a) (b) (c)

Figure 7: Texture Mapping on Nose. (a) original model; (b) chessboard; (c) I-Love-China.

Texture mapping is a method to measure the distortion of parameteri-
zation visually. We also define two kinds of quantitative criteria to measure
the distortion of parameterization.

Firstly, we measure the parametric distortion with the mean relative de-
viation of area and angle between the original mesh and the parameterized
mesh. The mean deviations are defined as:

L2
A(P) =

√√√√√
∑

j∈F

[ A(Tj)∑
Tj∈S
A(Tj)

−
A(T ∗j )∑

T ∗
j ∈P
A(T ∗j )

]2
, (14)

and

L2
B(P) =

√√√√
∑

j∈F

[ ∑

i=1,2,3

[S(Ai,j)

2π
−
S(A∗i,j)

2π

]2]
. (15)

where L2
A(P) is a metric of the mean deviation of area, L2

B(P) is a metric
of the mean deviation of angle. A(·) is the area of the triangle Tj, S(·) is an
angle metric.

Similarly, we measure the parametric distortion with the maximum rela-
tive deviation of area and angle between the original mesh and the parame-
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(a) (b) (c)

(d) (e) (f)

Figure 8: Texture Mapping on Face. (a)-(f) Beijing Opera Face texture
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(a) (b) (c)

(d) (e) (f)

Figure 9: Comparison of texture mapping obtained from different parameterization meth-
ods. (a) uniform parameterization; (b) conformal parameterization; (c) mean-value co-
ordinate parameterization; (d) harmonic mapping parameterization; (e) intrinsic parame-
terization; (f) distortion energy optimization parameterization
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(a) (b) (c)

(d) (e) (f)

Figure 10: Comparison of texture mapping obtained from different parameterization meth-
ods. (a) uniform parameterization; (b) mean-value coordinate parameterization; (c) dis-
tortion energy optimization parameterization; (d)-(f) local details

terized mesh. The maximum deviations are defined as:

L∞A (P) = max
j∈F

(
∣∣[ A(Tj)∑
Tj∈S
A(Tj)

− A(T ∗j )∑
T ∗
j ∈P
A(T ∗j )

∣∣), (16)

and

L∞B (P) = max
j∈F

(
[ ∑

i=1,2,3

[S(Ai,j)

2π
− S(A∗i,j)

2π

]2
). (17)

where L∞A (P) is a metric of the maximum deviation of area and L∞B (P) is a
metric of the maximum deviation of angle.

By using the metric defined in equation 14-17, we quantitatively compare
the area distortion and the angle distortion of the nose mesh model and the
human face mesh model with different parameterization methods. In table
1 and table 2, A represents the results of uniform parameterization, B rep-
resents the results of conformal parameterization, C represents the results
of the mean value coordinate parameterization, D represents the results of
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equidistant energy optimization parameterization of free boundary, and E
represents the results of equidistant energy optimization parameterization of
regular boundary. From the statistical data in the tables, we can see that
the area and angle distortions of the uniform deformation is large, while the
energy optimization parameters of the corresponding isometric deformation
is small compared to the conformal parameters, and the mean value coordi-
nate parameters, and the free boundary offset optimization is the minimum
deformation energy parameter.

In the use of conformal transformation 2D between regions will transform
the free boundary parameterization for parametric boundary rules, because
near the boundary conformal nature of conformal transformation will be af-
fected therefore, the parametric boundary rules would produce a certain angle
deformation near the border area and deformation which compare with the
parameterization of free boundary. So the distortion of the parameterization
with regular boundary is larger than that of free boundary, and the relevant
data in the table also confirms this point. However, in terms of the param-
eterization with regular boundary, the angle distortion of the results based
on the algorithm presented in this paper is close to the conformal parame-
terization method and the mean value coordinate parameterization method,
while the area distortion is far less than the above two methods. Overall, the
method proposed in this paper has smaller distortions.

L2
area L2

angle L∞area L∞angle
A 4.0259 32.3802 1.6564 3.2481
B 0.0152 1.3537 0.0014 0.1022
C 0.0263 2.2204 0.0197 0.1654
D 0.0030 0.1456 0.0021 0.0037
E 0.0073 1.0784 0.0018 0.0373

Table 1: Statistical data of nose mesh parameterization distortion.

6. Conclusion

We have presented a novel method to parameterize triangulated surface
meshes by minimizing the distortion energy. First of all, we introduced an
energy function to measure the parameterization disortion based on the con-
formal mapping and the theory of differential geometry. Then, we obtained
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L2
area L2

angle L∞area L∞angle
A 1.2441 16.317 0.0128 1.9124
B 0.0117 2.5086 0.0187 0.0289
C 0.0156 1.0029 0.0161 0.1524
D 0.0214 0.3001 0.0021 0.0163
E 0.0166 1.4889 0.0014 0.0377

Table 2: Statistical data of face mesh parameterization distortion.

the parameterization result by iteratively computing the minimizing solu-
tions of the energy functions of the triangles at every layer. The method
takes into consideration the angle distortion and area distortion, thus yield-
ing results with less global distortion. Various experiments have been worked
out to illustrate the effectiveness of the techniques proposed in this paper.
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