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Abstract

This paper introduces a disassemble-and-pack algorithm to disassemble a
mechanical 3D model in groups that can be efficiently packed within a box, with
the objective of reassembling them easily after delivery. Its key feature is that,
mostly, the mechanism can be disassembled at the joint and each part can be
an adjusted motion structure based on its joint type. Our system consists of two
steps: disassembling the mechanical object into a group set and packing them
within a box efficiently. The first step consists in the creation of a hierarchy of
possible group set of parts that can be tightly packed within their minimum
bounding boxes. Use the breadth-first search algorithm to traverse the hierar-
chy of possible group set in order to disconnect the joints and get the group set.
In the second step, according to the reverse order of volume, each group in the
set is inserted into the specified box. The fact that mechanism disassembly and
shape packing are both an NP-complete problem justifies finding approximated
solutions according to efficacy and efficiency. Experimental results show that
our approach can really efficiently pack a range of mechanisms from a simple
model to complex objects.
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1 INTRODUCTION
Three-dimensional mechanism fabrication is one of the central tasks in commercial CAD software, and its impact on
both academia and industry is so profound. Disassembly and packing are two of the well-studied optimization problems
in mechanism fabrication. In a typical technique, disassembly seeks to disconnect a mechanical object into a group set of
parts, with each satisfying a desirable geometric property, and packing involves placing a group set into a given container.
With the fact that two problems are an NP-complete problem, heuristics and approximated solutions must be used, and
algorithm efficiency is an important result.

In this paper, we present an approach to solve the two previously studied problems: mechanism disassembly and bin
packing problem.1,2 In the first step, the mechanical object is disassembled into a group set of parts with total minimum
volume. It means that the joint with maximum cost must be disconnected and adjusted to every part in each group. In the
second step, our approach computes a roto-translation for each of the groups when inserted into a specified box. The major
contribution of this paper is in how to disassemble a mechanical object into a group set that can be packed efficiently.
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Our original contributions can be summarized as follows:
• a novel disassemble-and-pack integrated approach to disconnect a minimum number of joints and pack efficiency;
• a new hierarchical disassembly algorithm that produces a group set with minimum total volume;
• a minimum oriented bounding box (OBB) of the mechanical group algorithm that calculates the motion parameters

of the parts.
A preliminary version of this paper appeared in the work of Li et al.3 This paper extends the earlier work3 as follows.

First, in order to improve the calculation speed, compared with the previous work using a triangular mesh representation
model, we voxelize each part of the mechanical object to represent an original mesh in 3D. Voxelization is applied in
collision detection, motion parameter optimization, and packing algorithm. Second, with the fact that shape packing is
an NP-complete problem, the group insertion order is from a large volume of the part to a small one. Experiments show
that the insertion sequence can improve the space utilization of the packing strategy. Third, comparing our method with
state-of-the-art methods, such as the splitPack,2 in space utilization and time efficiency, our algorithm has a significant
improvement. Fourth, the key parameters of the bottom surface of the box are analyzed, and the appropriate setting
strategy is obtained.

This paper is organized as follows. We summarize related work in Section 2. Section 3 describes the notation of our
algorithm and the overall disassemble-and-pack approach. Section 4 describes how to disassemble a mechanism to a
group set in a hierarchical strategy based on joint cost. In Section 5, we propose a novel mechanical group packing
algorithm. Section 6 discusses the test results for the four examples of the mechanism. Finally, we conclude this paper
with a summary and discussion of future work in Section 7.

2 RELATED WORK

Mechanism disassembly. Our algorithm is applied to the mechanical model. The goal of mechanism disassembly based
on joint type is to part a mechanical object to a group set that has minimum total volume of all group OBBs. A comprehen-
sive disassembly approach4 automatically generates a disassembly sequence from a hierarchical attributed liaison graph.
However, in order to promote space utilization, the structure motion of mechanical parts should be take into account.
For a complex mechanism with multiple parts, some approaches5–8 visualize its possible motion. As pointed out in the
work of Xu et al.,9 the relative motion of two parts connected via a joint is based on joint type. According to some present
approach, the joint type information can be automatically obtained or manually specified. For instance, the modeling
approach in the work of Zhu et al.10 automatically generates a mechanism assembly located in a box below the feature
base that produces the specified motion, and another modeling approach in the work of Xu et al.11 focuses on the shapes
of mechanical part primitives and their motion constraints in order to obtain both geometry and structure via multiview
images. Different from the study of Xu et al.,12 our approach uses a greedy strategy to exploit the hierarchy of possible
group set for high efficiency.

Mechanism packing. The goal of the algorithm is to solve a 3D bin packing problem for a mechanical object. We
hope to minimize the volume of a specified box containing a set of appropriately placed objects. In order to avoid
the NP-complete problem,13 heuristic-driven algorithms exist to find approximated solutions. The Cutting and Packing
approach,14 the Decomposing and Packing approach,1 and the Splitting and Packing approach2 can be summarized in
two main steps: partitioning a given object and placing a set of parted objects into a specified container. In the study of
Bansal et al.,15 the base area of the container is fixed, and the focus of the approach is to minimum height. Our work is
mostly related to the Splitting and Packing approach.2 However, different from splitting object in the work of Attene,2 our
work focuses on the disassembling of the mechanical object into parts and adjusting each part to the minimum volume
of an OBB for efficient packing. The previous work seeks to decompose the static model into a group of static parts that
can be efficiently packed. However, for the mechanical model, an arbitrary decomposition model can cause the model to
fail to assemble. The mechanical model should be disassembled at its joint. Instead of the static part, each mechanical
part's degree of freedom has been changed after disassembly.

3 DISASSEMBLE-AND-PACK APPROACH

In this section, we describe the overview of our algorithm: mechanism disassembly and mechanical group packing. We
begin by fixing our notation involved in the algorithm.
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FIGURE 1 Overview. The initial mechanical robot-arm is disassembled into two groups. Rotate and translate each part of the groups to
minimize the volume of every group. Repeat the above two steps to obtain the group set with the satisfied disassembling efficiency. Insert the
groups into the specified box one by one

3.1 Notation
Mechanical notation. Our algorithm treats a mechanism object as a collection of rigid parts interconnected to transmit
rigid motions, and a joint connects two parts to form a kinematic pair. Let P denote the part set of the mechanical object
and P = {p0, p1, … , pNp}, where Np is the number of the mechanical object's part. A joint connects two parts pi and pj
indicated by c(pi,p𝑗 ). A joint c is binary: connect or disconnect. A group has one or more parts, and their joints are indicated
by g. Not one joint between the arbitrary pair parts from two different groups is connected. Initially, a group set has only
one group, which includes all mechanical parts. Disassembling the mechanical object, some joints being set disconnected
and one group being split into several groups. A group set is denoted as G = {g0, g1, … , gNg

}, where Ng is the number of
groups.

Bounding box. A bounding box is usually used heuristically to speed up computation. In the bin packing problem, the
calculation of bounding boxes is a fundamental problem. According to the bounding tightness required, the bounding
box can be formulated in three ways: axis-aligned bounding boxes, OBBs, and minimum-volume bounding boxes (MBBs).
Axis-aligned bounding boxes are aligned with the axes of the coordinate system; it can be computed very efficiently but
not sufficiently. Principal component analysis can compute for OBBs. So far, the most outstanding is O'Rourke's,16 but it
is of high computational complexity (O(n3) for n input points). In order to calculate the exact volume, we use voxelization
to calculate the volume. The bounding box volume consists of two kinds of voxels: one are voxels occupied by the object
and the other are free voxels. The set of all voxels belonging to a part is called the voxel-box and denoted by Vox( p).

3.2 Overall approach
Our approach consists of two main steps, namely, disassembly and packing depicted in Figure 1. The goal of our algorithm
is to pack the mechanical object into the specified box with high space utilization. The input to our process includes the
mechanical object with its joint set and a target packing specified box. First, our algorithm disassembles the mechanical
object to a group set based on the joint set. Then, it rotates and translates parts of every group so that they fit an axis-aligned
box of minimum volume. In the group number being a constant number of the premise, the algorithm of disassembly
expects to get the group set with the minimum sum of group OBB volume. Finally, the algorithm efficiently packs each
group with rotated and translated parts into the box in sequence.

It is popular that the hierarchical approach disassembles the mechanical object (see, e.g., the work of Dong et al.4). In
our paper, we employ a novel binary hierarchical of disassembling object approach to provide much tighter packing. In
each disassembly step, a selected joint is set disconnected, and the mechanical object is disassembled into more groups.
Then, every part in each group has more degrees of freedom to be translated and rotated. Since the object volume is
constant, minimizing the group box volume means minimizing the hole volume of the group box. On the basis of joint
type, translate and rotate the parts in each group to minimize the hole volume. After each disassembly step, we obtain a
group set with minimum total volume of the group set, which will be packed into the box.

To minimize the number of disconnected joints, our approach employs breadth-first search for traversing a decision
binary hierarchical tree. It is for minimizing the cost of disassembly and reassembly take. We started with analyzing the
root of the tree (i.e., the whole object): If it can be packed into a specified box with sufficient efficiency (according to the
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(a)
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FIGURE 2 Motion parameter optimization. (a) A group of mechanical parts with motion parameters is a part of disassembled objects
(disassembly group). (b) Optimize the motion parameters to minimize the volume of the group (roto-translation group). (c) Compute the
minimum-volume bounding box (MBB) of the group (MBB group)

target), then we have a solution and stop. Otherwise, select a joint that is disassembled and can minimize the wasted
space and disconnect it. The root is separated into two children, which represent the group of mechanical parts. Continue
with packing and calculating the corresponding efficiency. If the result is satisfactory, the process stops; otherwise, our
approach goes down further in the hierarchy and separates one node into two children, packs with best efficiency, and so
on. If all joints have been disconnected, the process stops (see Figure 2).

The unique parameter of the algorithm is packing efficiency. It affects the number of joints that need disconnecting. The
initial setting of the packing efficiency is also the termination condition of the traversing decision binary hierarchical tree.
Unfortunately, object packing is an NP-hard problem, and not one approach can obtain the best packing efficiency and
minimum number of disconnect joints. Traversing the hierarchical tree produces a lot of solution space; hence, we need to
prune the tree to simplify the solution space. In fact, the greedy algorithm is adopted, which means that in each layer of the
hierarchical tree, only one joint is selected, which can promote maximum efficiency and disconnect it. Experiments show
that the simplified solution space can obviously improve the algorithm speed, and packing efficiency can be satisfied.

4 HIERARCHICAL DISASSEMBLING BASED ON JOINT COST

At the beginning of our algorithm, our approach disassembles the mechanical object into several groups of parts and
minimizes the sum of group MBB volume. There are two main problems that must be solved: one is how to calculate the
volume of the group box and the other is which joint should be selected. To calculate the group box volume, the mechanical
object must be actually a solid. This means that surface meshes with holes, self-intersections, and other sorts of defects
must be processed in advance using appropriate mesh repairing tools.17 Voxelization is used to calculate the volume of
the group box, showed in Figure 3, and it also avoids the problem that the input mesh is not solid. To minimize the sum
of group box volume, in each disassembling step, the joint with maximum wasted volume cost is selected. Disconnect the
selected joint to generate more groups for packing.

4.1 Voxels of part's volume
Calculating the volume of an object can be a time-consuming task. Accurately calculating the volume of the object is
to sum up each volume of tetrahedron. However, this method requires transforming our mesh into a tetrahedral mesh.
Unfortunately, our algorithm requires a lot of calculation collision volume of two parts. In order to calculate efficiency, we
prefer to use simple data structures to calculate collision volume instead of the tetrahedral mesh. Therefore, our algorithm
adopts voxelization to calculate the volume of the parts. Voxelization not only applies to almost all meshes but also can
greatly improve the efficiency of the algorithm.

At beginning of our algorithm, we voxelize each part of the mechanical object to represent the original mesh in 3D.
This is to speed up the calculation of volume and collision. Firstly, using principal component analysis, our algorithm
computes the oriented bounding box OBB( p) of each part. On the basis of the three oriented axes of the OBB( p), the
bounding box can be voxelized into several voxels in 3D. Then, the voxels are classified as either free or occupied, as
depicted in Figure 3. The occupied voxels represent the shape of the mechanical part, and the number of occupied voxels
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FIGURE 3 The oriented bounding boxes are classified into two kinds of voxels. The yellow pieces represent free voxels, and the red pieces
represent occupied voxels

represents the approximate volume of the part. For an accurate volume, the algorithm can improve the resolution of the
voxels. However, the higher the resolution, the higher the algorithm time complexity. We will discuss this issue in the
experimental part.

4.2 Disassembling efficiency
As to which joint is selected to disassemble, the most critical task is to minimize the wasted volume. While the parts of
a group are packed into a container, the free volume is the wasted volume. The best packing efficiency is where the free
volume is 0, which means that the volume of parts of a group is equal to the MBB16 volume. A natural way to define the
packing efficiency E(g) of a group g is as follows:

E(g) = Vol(g)∕Vol(MBB(g)), (1)

where Vol(.) denotes the volume and MBB denotes the minimum-volume bounding boxes. According to Definition 1,
E(g) is 1; it means that the G with the best packing efficiency is an actual box, whereas it is smaller in all the other cases.
A calculation of the group g wasted volume is helpful in the selection of the joint, and it is defined as follows:

W(g) = Vol(MBB(g)) − Vol(g). (2)

According to Definition 2, the best packing efficiency means the wasted volume W(g) is 0. The packing efficiency and the
wasted volume of the part is the same as Definition 1 and Definition 2.

For an efficient calculation of the volume, our algorithm voxelizes the MBBs of the mechanical object. The number
of voxels the mechanical group parts occupied represents the group volume Vol(g). The total number of voxels of MBBs
consists of occupied voxels and free voxels.

4.3 Disassembling joint with maximum cost
The mechanical object is treated as a collection of rigid bodies interconnected to transmit rigid motions, and a joint
connects two parts to form a kinematic pair. Different joint types impose distinct motion constraints between two parts.
As pointed out in the works of Mitra et al.5 and Xu et al.,9 the relative motion of two parts connected via a joint should be
a slippable motion that does not lead to the penetration of parts, and it can be determined by the type of their intersection.
Figure 1 summarizes the four main types11 of joints used in our approach: fixed joints, revolute joints, gear-to-gear contact
joints, and point-on-line joints. As shown in the work of Zhu et al.,10 the motion of a mechanism is initialized at the driving
part and transferred to other parts through its kinematic chain. In a kinematic chain, the motion of a part is restricted
to the connected part based on joint type. Moreover, it is the summation of transferred motion and own motion. For a
mechanical part, transferred motion is constant, and own motion is freedom without the restriction of connected parts.
In our paper, we categorize the own motion types based on joint types as follows.

1. The two parts connected via a fixed joint move in the same direction. The motion of the part is equal to transferred
motion, and own motion is null.

2. The gear-to-gear joint can transfer the rotational motion from one gear to another. The rotation of the part's motion
is equal to the inverted rotation of transferred motion, and own motion is null.
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3. The relative motion of a revolute joint is rotation. The translation of two axes is equal to the corresponding translation
of transferred motion. The rotation and translation on one axis is own motion.

4. The sliding (point-on-line) joint indicates that the block can slide on the planar surface of another. The translation
of one axis is equal to the corresponding translation of transferred motion. The translation of one axis and rotation is
own motion.

Summing up the above four types, the slippable motion of a part p is considered as the summation of translation and
rotation.

In a group of mechanical parts, our algorithms search the motion parameters of every part to minimize the group
volume vol(g). The optimization function of group volume vol(g) can be expressed as

vol(G) =
Ng∑

i=1
vol

(
Rot

(
𝜃pi

)
+ Trans

(
𝜏pi

))
+ 𝜆Volcollision, (3)

where Rot(𝜃pi ) and Trans(𝜏pi) are the translation and rotation of the motion parameters of a part, 𝜆 is a constant, and
Volcollision is the penalty factor. Since packing with best efficiency means minimizing the group volume, we minimize
Equation (3) with gradient descent techniques, where joint types are constant and motion parameters are continuous
random variables. Furthermore, due to the considered running time, gradient descent techniques are used, but it is easy
to fall into the local optimal solution. In order to avoid a local optimal solution, the algorithm optimizes the function with
multiple initial motion parameters. The motion of two parts in one group cannot lead to the collision of parts. Thus, the
penalty factor is the collision volume of two parts, and it is used to restrict the motion parameters.

The penalty factor Volcollision requires fast and robust 3D collision detection algorithms. The computational cost of a
collision detection algorithm depends not only on the complexity of the basic interference test used but also on the number
of times this test is applied. Some strategies in the works of Jiménez et al.,18 Ericson,19 and Gottschalk20 rely on distance
computation algorithms, hierarchical object representations, orientation-based pruning criteria, and space partitioning
schemes. Our strategy uses collision detection based on voxelization. At the beginning of our algorithm, each part has been
voxelized into several voxels. If two parts have collision, there must be overlapping voxels, and the number of overlapping
voxels represents the collision volume. Using the voxelization collision detection algorithm greatly improves the efficiency
of the algorithm. Therefore, we use overlapping voxels as Volcollision to optimize Equation (4).

In this section, our target is to obtain a group set with minimum total volume, which is indicated as vol(G) =
∑Ng

i=1 vol(gi).
Initially, the mechanism is a whole object with group set G0 and joint set C0, where the subscript index is represented
as the step of disassembly. When disassembling to the ith, a joint in joint set Ci is selected to be disconnected at the
next step for minimizing the volume vol(Gi + 1). That means every disassembling step is maximizing reduced volume
vol(Gi) − vol(Gi + 1). Our algorithms disconnect each joint in Ci to find the maximum reduced volume.

5 MECHANICAL GROUP PACKING

After the previous section, a mechanical object is then disassembled to a group set; our objective is to determine a
roto-translation for each group so that their overall MBB is minimized. To solve this problem, our approach initializes an
axis-aligned box that can contain all objects in the group set. Prior to computing such a box, however, the object is rotated
according to its MBB, so that the initial box is both axis aligned and of minimum volume. That means the bottom of the
box is constant and the vertical direction of the box is variant, which decides the volume size. Then, groups of parts are
inserted into the box one by one while measuring their total height. Minimizing the total height is equal to minimizing
the total volume. Then, optimize each part motion parameter of every group to minimize the hole volume in the box.
After determining the target, the algorithm needs to solve the following three problems: the group insertion order, the
group placement strategy, and motion parameter optimization.

5.1 Insertion order
The fact that shape packing is an NP-complete problem thus justifies that heuristics and approximated solutions with
assessed efficiency should be used. If the group insertion order is random, the run time will grow exponentially with
the group size. Meanwhile, a difference with respect to the optimal solution is up to 70%.13 If groups are inserted from
largest to smallest, such a difference decreases down to 22%.21 Thus, before inserting the group into the box, our algorithm
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sorts the groups based on their maximum extension, which, for each group, corresponds to the maximum length of its
vol(MBB(g)). For mechanical object packing, first inserting the larger group is conducive to filling the holes, which is the
small volume in the larger group, to improve efficiency.

5.2 Placement of one group
Inserting a group set G into the box is to determine a roto-translation of g, as in the work of Attene.2 Our algorithm uses
quaternion Q and a vector V to define the rotation and translation of the group, respectively. Simplify the problem of
optimal Q and V, and compute V for a given fixed value of Q.

Because the bottom of the box is constant, we need to find a strategy to minimize the height of the box when inserting all
the mechanical groups. On the basis of the insertion order, the groups are inserted into the box one by one. The placement
of each group requires an algorithmic decision to increase the space utilization of the box. In order to minimize the height
of the box, the algorithm minimizes the holes as much as possible and tiles each group in the box. The algorithm proceeds
as follows as depicted in Figure 4.

1. If there are holes that can contain P, we select the one whose volume is closer to P's volume and set V accordingly.
2. If no such hole exists, we set V so that P's underlying free volume is minimized while not increasing h.
3. If all the positions increase h, we set V so that h increases as few as possible.

At any stage of the algorithm, free voxels of the box can be clustered into regions of two types we call holes and slots.2
Block a belongs to holes, and block b belongs to slots. When a new group will be inserted into the box, according to how
the algorithm proceeds, we first try to place it in the hole. If this is not successful, we try to place it in the slot. Otherwise,
we place it on top of the other groups in the box.

When a new group P is placed into a hole in the box, the algorithm computes the position V and the orientation Q. If
the new P does not intersect any previously placed part, the V and the Q are a valid roto-translation for P. That is to say,
the hole can contain P. To do that, the voxels belonging to the newly placed P are all free. First, with the orientation fixed,
the algorithm finds a V through the gradient descent algorithm to minimize the number of collision voxels, which overlap
the newly placed P and the previously placed part. Then, rotate the newly placed P until finding the valid V and Q. If this
is successful, the newly placed P can be inserted into the holes. Otherwise, no such hole exists, and the algorithm will
look for a suitable slot.

When inserting a newly placed P into the slot, our algorithm finds inspiration from the work of Sander et al.22 Let P be
the part to be placed into the slot, and minimize the height of P. The algorithm needs to optimize both parameters V and
Q at the same time. The initial value of V is the center of the slot's OBB, and the initial value of Q is the unit matrix. If no
such slot can contain a newly placed P, the algorithm inserts P on top of the box. The algorithm fixes the rotation Q and
sets V to minimize the increasing height.

The packing algorithm defines a single cost to be minimized as follows:

Cost(P) = ΔhB + U, (4)

where Δh is the increase in h, U is P's underlying free volume, and B is the total volume of the box. To include Q in the
cost minimization process, we simply add an outer loop where a set of predefined rotations is iteratively assigned to Q.
The algorithm uses uniform sampling23 of the space of unit quaternions to compute predefined rotations.

a

b

c

P

FIGURE 4 Inserting a group set into the brown box. There are already three groups (yellow part, blue part, and green part) in the box.
There are three places where the red P can be placed, and they are the dotted a, dotted b, and dotted c, respectively
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(a) (b) 

(c) (d) 

FIGURE 5 Joint types connecting two parts. (a) Fixed joint. (b) Gear-to-gear joint. (c) Revolute joint. (d) Sliding joint

θ

t

(a) (b)

FIGURE 6 Motion parameter optimization. The blue area is the groups placed into the box. When a new mechanical group is placed into
the box, the translation t and rotation 𝜃 of each part should be optimized to minimize the hole volume, as shown on the right. After
optimization, the red area is the space saved. (a) Before optimization. (b) After optimization

5.3 Motion parameter optimization
The above packing algorithm is similar to the work of Attene.2 However, for the mechanical model packing problem, this
algorithm can only get the approximate position in the box. We can improve the space utilization by optimizing each part's
motion parameter of every packed group. As mentioned above, minimizing the volume of the hole in the box is equivalent
to increasing the space utilization. Hence, when we place each group into the box, our goal is to reduce the volume of the
hole. Instead of a static model, the slippable motion of each part of the mechanism can be adjusted to match the shape of
the hole in the box. The relative motion of two parts connected via a joint based on the type of their intersection has been
presented in Section 4.3 and shown in Figure 5. Similar to the previous optimization, our algorithm optimizes each part's
motion parameter to minimize the hole volume when the group is placed into the box. As shown in Figure 6, utilizing the
advantages of the mechanism joint freedom, the motion parameter of each part of the placed group is optimized, making
the group part more compact and, thus, improving packing space utilization.

5.4 Overall packing algorithm
To summarize our algorithm, the initial input is a mechanical model, and the initial parameters are the space utiliza-
tion Umin, the bottom size of the box, and the maximum number of disassembly Smax. The goal of our algorithm is to
acquire maximum space utilization with minimum number of disassembly when placing a mechanical model into the
box through Algorithm 1.
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6 RESULTS AND DISCUSSION

We have implemented the system on a desktop PC with an Intel I7 CPU (4.20 GHz) and 16-GB memory. As shown in
Figures 1 and 7, our experiments selected four representative mechanical objects, namely, robot-arm, crank-block, motor,
and excavator, which are disassembled and packed into a box. In Section 5, the initial bounding box is discretized using
2563 voxels, which is implemented to calculate the volume of the parts at the same scale. Detailed statistics of the packing
mechanical object are reported in Table 1.

In order to improve the packing efficiency, more groups of the model disassembled is profitable. Unfortunately, for the
mechanical object, more joints are connected, resulting in increased mechanical part disassembly time and the mecha-
nism being more likely to be destroyed. In our experiments, the total number of groups in Table 1 and the packing result
in Figure 7 show that the mechanical object is disassembled into a few groups, which retains the main structure of the
mechanism. The data show that more than two thirds of the joints are still connected.

In the mechanical group packing experiment, the initial bottom of the box influences the eventual packing effi-
ciency. Before inserting the group set into the box, the maximum width and length of the parts have been calculated in
Section 5.1. Our experiment took four scales to set the initial bottom size, which are 1.0, 1.25, 1.5, and 2 times of maxi-
mum width and length. A smaller bottom size setting is adverse to the case with many large parts. Meanwhile, in the case
with a larger bottom size setting, there are many holes. As a result, our experiment observes that the bottom size set at
1.25 time will acquire maximum packing efficiency.
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(a) (b) (c)

FIGURE 7 Some example models used to test our algorithm. (a) Crank-block. (b) Motor. (c) Excavator

TABLE 1 Statistics of the packing mechanical object. #Parts, #Joints, and #Groups denote the total
number of parts, joints, and groups, respectively

Name #Parts #Joints Init efficiency #Groups Pack efficiency Running time (s)

Robot-arm 18 21 9.4% 5 27.2% 9
Crank-block 9 9 13.6% 5 38.0% 6
Motor 29 28 5.8% 6 17.2% 22
Excavator 32 37 6.2% 11 15.4% 31

TABLE 2 Packing efficiency result

Name splitPack Ours

Robot-arm 13.2% 27.2%
Crank-block 23.9% 38.0%
Motor 8.6% 17.2%
Excavator 9.1% 15.4%

While this paper was under review, a quite similar work was published by another group.2 The concurrent algorithm,
called splitPack, aims at splitting an object and packing the resulting parts. Different from the splitPack, our mechanism
object has an amount of joints and parts, and quite a few joints are unnecessary to be split. The disassembled group can
improve space utilization by rotating and translating the parts, which are subjected to the constraints of joint type. In
order to facilitate the assembly of mechanical models, the algorithm aims at minimizing the number of disassembly with
satisfied packing efficiency. At the same number of disassembly, compared with splitPack, our algorithm has a significant
improvement in space utilization (see Table 2).

7 DISCUSSION AND CONCLUSION

In this paper, we have presented a packing algorithm to disassemble a mechanism into a group set and insert them into
a box. It consists of two main steps: The first step is disassembling the joint with maximum cost and adjusting each part
in the group with maximum efficiency. The second step is sorting the group by volume and inserting the group into the
box. The above two steps are repeated until the packing efficiency satisfies the initial requirements.
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Limitations and future work. Because of the running time, our approach uses the strategy of the greedy algorithm
to disassemble the mechanism object. Hence, we cannot prove that the current disassembly result has the best efficiency.
For a complex mechanical object, disassembly order is based on the connection topology of the parts. Disassembly order
influences the eventual packing efficiency; hence, the order should be considered in our algorithm.
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